Using rule-based natural language processing to improve disease normalization in biomedical text

نویسندگان

  • Ning Kang
  • Bharat Singh
  • Zubair Afzal
  • Erik M. van Mulligen
  • Jan A. Kors
چکیده

BACKGROUND AND OBJECTIVE In order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionary-based. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization. METHODS We compared the performance of two biomedical concept normalization systems, MetaMap and Peregrine, on the Arizona Disease Corpus, with and without the use of a rule-based NLP module. Performance was assessed for exact and inexact boundary matching of the system annotations with those of the gold standard and for concept identifier matching. RESULTS Without the NLP module, MetaMap and Peregrine attained F-scores of 61.0% and 63.9%, respectively, for exact boundary matching, and 55.1% and 56.9% for concept identifier matching. With the aid of the NLP module, the F-scores of MetaMap and Peregrine improved to 73.3% and 78.0% for boundary matching, and to 66.2% and 69.8% for concept identifier matching. For inexact boundary matching, performances further increased to 85.5% and 85.4%, and to 73.6% and 73.3% for concept identifier matching. CONCLUSIONS We have shown the added value of NLP for the recognition and normalization of diseases with MetaMap and Peregrine. The NLP module is general and can be applied in combination with any concept normalization system. Whether its use for concept types other than disease is equally advantageous remains to be investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BioinformaticsUA: Machine Learning and Rule-Based Recognition of Disorders and Clinical Attributes from Patient Notes

Natural language processing and text analysis methods offer the potential of uncovering hidden associations from large amounts of unprocessed texts. The SemEval-2015 Analysis of Clinical Text task aimed at fostering research on the application of these methods in the clinical domain. The proposed task consisted of disorder identification with normalization to SNOMED-CT concepts, and disorder at...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

NCBI disease corpus: A resource for disease name recognition and concept normalization

Information encoded in natural language in biomedical literature publications is only useful if efficient and reliable ways of accessing and analyzing that information are available. Natural language processing and text mining tools are therefore essential for extracting valuable information, however, the development of powerful, highly effective tools to automatically detect central biomedical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013